AI is fast-tracking the search for 'Aliens' and other habitable worlds like Earth

Produced by: Tarun Mishra

AI and Machine Learning  in Astronomy

Modern astronomy heavily relies on AI and machine learning (ML) to manage vast data from telescopes, with ML efficiently identifying patterns in large datasets.

Role of ML in Exoplanet Biosignature Search

ML plays a crucial role in searching for biosignatures on Earth-like exoplanets, which is a key focus in contemporary astronomy.

Transmission Spectroscopy for Distant Exoplanets

Astronomers use transmission spectroscopy to study starlight passing through an exoplanet's atmosphere, identifying molecules by analyzing the split light into different wavelengths.

Challenges in Detecting Biosignatures

Identifying chemical biosignatures is challenging due to natural abiogenic processes, stellar activity, weak atmospheric signals, and interference from clouds or haze.

Rayleigh Scattering  and Signal-to-Noise  Ratio Issues

Rayleigh scattering and other "noises" can degrade the signal-to-noise ratio (SNR), complicating the detection of molecular absorption lines in spectroscopic data.

New ML Tool for Identifying Biosignatures

Researchers developed an ML tool to classify transmission spectra with low SNR, focusing on potential biosignatures like methane, ozone, and water for follow-up observations.

Training the ML Model with Synthetic Spectra

The model was trained on synthetic atmospheric spectra, particularly from the TRAPPIST-1e planet, which is ideal for testing due to its Earth-like properties.

Successful Identification of Potential Biosignatures

The ML system successfully identified synthetic atmospheres containing methane and ozone, relevant markers for biological life, especially similar to Proterozoic Earth's atmosphere.

Optimizing JWST  Observing Time

The model can streamline the search for habitable exoplanets, optimizing JWST's limited observing time by quickly identifying promising candidates for detailed follow-up studies.